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Abstract. The present paper provides a formal derivation of a set of equations linking the 
S-matrix and density matrix methods. The formal manipulations involved permit a clear 
statement of the mathematical assumptions required in order to arrive at the associated set 
of time-irreversible equations. They should thus permit future investigations to put the 
whole theory on a more rigorous basis. 

1. Introduction 

For a system with a total Hamiltonian H of the form 

H=Ho+V (1.1) 
in which Ho is the unperturbed Hamiltonian and V is the perturbation, the density 
matrix p of the system obeys the Liouville-von Neumann equation 

ap/at = -(i/A)[H, p ]  = - U p  = -i9op - i z 1 p  

S = [ H ,  I, 9o=[Ho, I, al=[v, I. 

(1.2) 
where, in terms of commutator brackets, 

Equation (1.2) is exact and time reversible. Recently (Roberts and Hagston 1979a) we 
proposed in place of equation (1.2) the following irreversible equation for the diagonal 
part P d  of the density matrix: 

a P d / a t  = -(i/h)R'[ V, p]R- (1.3) 
where the Mdler operators R, are defined by (Roman 1965) 

1 a, = 1 + Lim T* rl-.o+ E,  - -HOkiq  (1.4) 

and E, refers to the energy eigenvalue of the (unperturbed) state upon which a, acts, 
whilst T is the usual t-matrix of scattering theory. An appropriate generalisation of 
equation (1.3) for the case of open systems was postulated in a second paper (Roberts 
and Hagston 1979b). No attempt at a formal justification of equation (1.2) or its 
generalisation was attempted in either of these papers. However it was shown that, 
starting from these equations, various other well known equations of physics could be 
rapidly and easily derived. As a result it was argued that the postulated equations must 
have some range of validity. 
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It is clear that, for example, equation (1.3) cannot be of universal validity since it is a 
Markoffian equation. Although the latter cover a large and important class of physical 
systems (van Kampen 1976) there are systems which cannot be described by Markoffian 
equations. In order to form an appraisal of the range of validity of equations such as 
(1.3) it is essential to have first some formal derivation (however approximate) of these 
equations. Concerning this point it is to be emphasised that any derivation of an 
irreversible equation from a reversible one must of necessity invoke some type of 
approximation. The basic aim of the present paper is to provide a formal derivation of 
equation (1.3) and its generalisation for open systems. 

In the process of this derivation certain mathematical difficulties arise which, 
although far from trivial, are not peculiar to the present discussion but occur in a wide 
range of physical problems. One such example is the time development operator 
U(?, to) defined below. It has long been known (see e.g. Jauch and Rohrlich 1955) that 
this operator becomes ill defined when one or more of its time arguments becomes 
infinite. Nonetheless the time development operator has, in exactly this context, played 
a major role in the evaluation of the Green functions of many-body systems by 
time-dependent perturbation theory (Abrikosov et a1 1963, Fetter and Walecka 197 1). 
Hence in what follows we tacitly assume that entities such as U(?, to) exist in the 
appropriate limit. This is in accord with our main theme which is simply to provide a 
formal derivation of the basic equations of the theory, since this is regarded as being the 
problem of first importance. Once this has been achieved it is hoped that bringing this 
derivation to the attention of other workers in the field will result in a resolution of the 
various mathematical difficulties previously alluded to, and the placing of the theory on 
a much firmer foundation. 

2. Formal manipulations involving a limit procedure 

One characteristic feature of the present analysis is the use of a certain limit procedure 
(see below for details). Since the conditions for the validity of this procedure would 
require a long and detailed analysis which we are at present unable to give, we adopt the 
alternative of seeking a justification for its validity by employing it to establish certain 
formal results obtained previously by other authors using a different technique. 

2.1. The density matrix and the Mdler  wave operators 

The general solution of the Liouville-von Neumann equation is 

Employing the interaction picture (Roman 1965), this becomes 

p ' ( t )  = exp( ;Hot) exp[ - k H ( t  - to )]  exp( -:Hoto) p'(to) exp( :Hoto) 

x exp[ ; H ( t  - to)] exp( - ;Hot) 

which simplifies to 
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where U(t,  to) is the well known time development operator (Roman 1965) and is given 
by 

(2.4) 

Naively taking the limits t + +CO and to+ --CO we obtain, assuming that the limit of the 
product on the right-hand side of equation (2.3) is the product of the limits taken 
separately, 

p'(00) = sp'(-co)s+ (2.5) 

where we have used the fact (Roman 1965) that the S-matrix is given by 

S = Lim U(t,  to). 
t++m 
to+-m 

On the other hand it follows from equation (2.3) that under the same type of limiting 

(2.7) 

(2.8) 

procedure 

p ' (0)  = U(0,  -00)p'(-Co)U'(O, -00) = R+p'(-oo)R: 

p ' ( 0 )  = U(0, +co)p'(+00)U+(o, +a) = R_p'(+co)RC 

and 

which. follows from the fact (Roman 1965) that 

The results expressed in equations (2.5), (2.7) and (2.8) are generalisations of the 
relations derived by Stanton (1971) for the case of pure states, and, as demonstrated by 
this author, they provide a useful alternative to that of formal scattering theory for 
calculating the T-matrix. 

2.2. Analysis of the BBGKY hierarchy 

The purpose of the present section is to describe a method of introducing the MBller 
wave operators into the derivation of the quantum Boltzmann equation. This problem 
was discussed initially by Snider (1960) with later formalistic interpretations by Snider 
and Sanctuary (197 1). 

The first two equations in the BBGKY hierarchy read as follows (Snider 1960): 

i W 1 ,  t )  =L(l )p( l ,  t )+dJ  y 3 1 , 2 ) P ( l ,  2, t ) ,  (2.10) 

(2.11) 

In an obvious notation, p(1, t )  is the one-particle density matrix of particle 1 with 
Liouvillian L(l ) ,  p ( l , 2 ,  t )  is the two-particle density matrix with Liouvillian L(1,2) 
whilst L'(1,3) is the interaction Liouvillian for particles 1 and 3 etc. The constant dJ is 
simply the (number) density of particles. For a dilute gas the probability of a triple 
collision between particles 1 , 2  and 3 is very small, hence, for the purposes of calculating 

ih@(l ,  2, t )  =L(1,2)p(l ,  2, t )+4  Tr [(L'(l, 3)+L'(2,3))p(l, 2 ,3 ,  t ) ] .  
3 
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p ( l , 2 ,  t), we ignore the second term on the RHS of equation (2.11). As a result this 
equation simplifies to 

(2.12) ihd(1, 2, t) = L(1,2)p(l, 2, t )  

which has the formal solution 

From the definition of U(t,  to)  in equation (2.4) we obtain 

(2.13) 

hence 

= U(0,  to- t )  exp (2.15) 1 
For the two-particle system which occurs in equation (2.13), Ho( l ,  2) is the kinetic 
energy and internal state energy operator referring to particles 1 and 2. These 
considerations enable us to rewrite equation (2.13) in the form 

1 p ( l , 2 ,  t ) =  U(0, to- t )  exp 

At time t it is argued (Snider 1960) that the particles are colliding, whereas to is an 
earlier time prior to the collision commencing and where the Boltzmann property is 
assumed to hold, namely 

P ( l , 2 ,  to) = A I ,  tO)P(2, to). (2.17) 

The effect of exp[-(i/h)Ho(l, 2)(t - t o ) ]  is to take a wavefunction at a time to to a time t 
under the action of a Hamiltonian which contains no interaction. From equation (2.16) 
and the commutative properties of Ho( 1) and H0(2) we find that 

If we choose to + -00, so that to - t + -00, we find, by invoking equations (2.15) and (2.9) 
and assuming the validity of the limiting procedure employed earlier, that equation 
(2.16) becomes 

(2.19) 

With this result the 'closed' equation of motion for the single-particle density matrix is, 
from (2.10), 

PO, 2, t )  = .n+(l, 2 M 1 ,  t M 2 ,  G". 

ihb(1, t )=L( l )p ( l ,  t)+4 P ~ ' ( 1 , 2 ) n + j l ,  2)p(l, t M 2 ,  t).n31,2). 
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Expanding this expression and employing the well known result (Roman 1965) 

H1(l, 2)fl+(1,2) = T+(l, 2) = T(1,2)  

together with its Hermitian conjugate, where T is the transition matrix related to the 
S-matrix by 

S = l + T ,  

we have 

If we now employ the expression for fl+ given in equation (1.4) and take arbitrary 
matrix elements, we readily obtain (Snider 1960) 

= HO(l)a l  p (1 f ) a l b l -  p (1 t)alblHO(l)bl 

+ 2 T i 4  TacP(1, t)c,cIP(2, t )~~c~T~ 'bSnzb~~(Eb-Ec)  
cc'azbZ 

+ 4  [Tacp(l, t)clblP(2, f)c2bz-P(1, t)uicip(2, t)azc2T:bl (2.20) 
cazbz 

where a l  is the eigenvalue of Ho(l) for particle 1, a2 that for particle 2 and a is the 
comprehensive eigenvalue denoting al ,  a2.  This holds for b, c and c' as well. 

Starting from equation (2.20) we can obtain (see Snider 1960) the usual Boltzmann 
equation for a dilute gas and the modified Boltzmann equation for the corresponding 
Wigner distribution function. Snider and Sanctuary (1971) argue that the replacement 
of p ( l , 2 ,  t )  by f l+p( l ,  t)p(2, t)fl: (see equation (2.19)) is a natural approximation in 
accordance with the 'philosophy' of the Boltzmann equation. We note that it is a simple 
consequence of the presumed validity of the limiting procedure we have employed. 

3. Derivation of the 'asymptotic' equations of motion 

3.1. Closed systems 

In the present section we will invoke the same type of limiting procedure as that 
described above in order to derive the equation of motion for a closed system in a form 
identical with that postulated in an earlier paper (Roberts and Hagston 1979a, b). The 
complete time behaviour of any closed system is, in the interaction picture, governed by 
the Liouville-von Neumann equation (Roman 1965): 
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Introduce an entity D which acts on operators only according to the prescription 

DA =c (44Q)l4-4 
U 

(3.2) 

where A is an arbitrary operator, and where the I Q )  are eigenkets of the unperturbed 
Hamiltonian Ho. For any well behaved observable operator B that does not possess 
pathological properties, we clearly have 

(al[Ho, BIIQ) = 0. 

From this and the definition of D it follows that we have the identities 

D2?0 = 2?oD = 0. (3.3) 
The result expressed in equation (3.3) is the operator analogue of the well known 
Zwanzig identities (Zwanzig 1960). Applying D to both sides of equation (3.1) and 
employing equation (3.3) on the LHS shows that 

If we now employ equation (3.3) on the RHS of equation (3.4) it is clear that we can 
replace the time variable t in the exponential operator by any arbitrary time variable 7 

(say), thus giving 

o d ( f )  = - ( i / W  exp[(i/h)%71[V, p(t)l. (3.5) 

Inserting the unit operator in the form exp[-(i/h)%] exp[(i/h)2?~] into equation (3.5) 
gives 

(3.6) 
i 
h 

= --DU+(O, 7) exp 

where we have employed equation (2.14). Taking the limit T -P 03 and assuming validity 
of the limit procedure gives 

1 
= --Dn'[v, p(t)]n- (3.7) h 

where in the first step we have employed equation (2.9), in the second we have used the 
intertwining relation (Roman 1965) 

Honk = RIH 

and in the final step we have utilised equation (3.3). Hence what we have shown is that 
the equation of motion is 

(3.8) d ( t )  = -(i/h)R+[ V, p(t)]n- 
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as long as it is understood that we take diagonal elements only. It is seen that equation 
(3.8) is identical with that proposed earlier (Roberts and Hagston 1979a, b) and since 
the manipulations in this paper involved diagonal elements only, we have thus obtained 
a formal justification for the validity of the procedures employed there. 

3.2. Open systems 

The extension of the above derivation to the case of an open system is straightforward. 
Thus we consider a closed system composed of two subsystems B and C which interact 
with one another. The total system is completely described by the density operator p 
which, in the interaction picture, obeys the Liouville-von Neumann equation 

ap' i 
-= at -- ii exp( ipt)[v, p] (3.9) 

where 

2P = W O ,  I, H O = H i  +HE, V =  VB+ VC+ VBc. 

In this notation, H i ,  for example, is the unperturbed Hamiltonian associated with 
system B, VB is its internal perturbation whilst VBC is the coupling of system B to system 
C. Application of the total diagonalising projection operator D = DBDc (where DB is 
the diagonalising projection operator for system B, etc) to equation (3.9) gives 

(3.10) 

Again utilising the relations D B 2 i  = Dc2E = D2'= 0, we have 

Inserting the identities 

where 

2 B  = [Hi + VB, 1, 9 c  = [ H E  + vc, 1, 2' = [Hi + HE + VBC, 1, 
and taking the limit 7 + 00 we obtain, in the same manner as before, after making use of 
the corresponding intertwining relations, 

P d ( f )  = -(i/h)DO?(B)[ VB, p]O-(B) - (i/h)DRz(C)[ vc, p]n-(c) 

- (i/h)DO+(BC)[ VBC, p]O-(BC) (3.11) 
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fl-(C) = Lim exp 
7+m 

R-(BC) = Lim exp 
7-00 

with 
HB = H: + vB, H ~ = H ;  + vC. 

(3.12) 

(3.13) 

Again the results expressed in equations (3.11) to (3.13) provide a formal justification 
for the equations of motion for an open system postulated in an earlier paper (Roberts 
and Hagston 1979a, b). 

4. Discussion and conclusion 

In the above we have shown that the assumption of the validity of a certain limiting 
procedure, when coupled with the presumed existence of the limits of the various 
entities taken separately, leads to certain formal results relating the S-matrix and 
density matrix formalisms obtained by other authors using a different approach (Snider 
1960, Stanton 1971). Employing the same technique has enabled us to obtain a formal 
justification for the equations we postulated earlier relating the S-matrix and density 
matrix methods (Roberts and Hagston 1979a, b). In this sense the main aim of the 
paper has been realised. It is to be emphasised however that the manipulations 
themselves raise many difficult mathematical points and only when these have been 
clearly resolved will the theory be placed on a sound footing. It is hoped that by drawing 
the attention of other workers to the points of principle involved, the present paper will 
be instrumental in this purpose. 
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